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Back round B Power System Stability

Definition
Problem “Power system stability is the ability of an electric power system, for a given initial operating condition, to
D - t regain a state of operating equilibrium after being subjected to a physical disturbance, with most system

escri p ion variables bounded so that practically the entire system remains intact. ”

Conventional power grid = “Smart Grid” Higher operating
Methodology - Generation side: high-level intermittent renewable energy integration uncer'iamtles

« Demand side: demand response, electric vehicle, distributed energy storage, etc. Complicated system

onverters dynamics
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Very high wind power
penetration level (48%)
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Backrou nd B Classification for Power System Stability

» Rotor Angle Stability (large-disturbance and small-disturbance)
Problem * \oltage Stability (short-term or long-term) I « Resonance stability (electrical and torsional)

- :  Frequency Stability (short-term and long-term . -dri ili i '
Descri ptlon quency y ( g-term) Converter-driven stability (fast and slow interaction)

x=fx,y,p,A) 0=gxypd)

Methodology

B Classification for Stability Assessment and Control

u YapsNHURCopyright 2024

time

Steady State Dynamic State
Case Study (pre-fault) Contingency (post-fault)
Conclusion Accuracy, Speed, Knowledge Accuracy, Earliness, Reliability

& NANYANG ‘ l

Lﬁ(f\l}lé\lROSLI$$ICAL the faster, the more faults can be assessed the earlier, the more time is left for control
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SET GGl B Conventional Methods (Model-based)
« Time-domain Simulation: to solve a large-scale differential-algebraic equation (DAE) set
Problem « Data requirement: system model (static and dynamic), network topology, state-estimation, fault, etc.

« Qutputs: system’s time-varying trajectories

Description

« Event-based control: lookup decision table, contingency indexing
“for a 14,000-bus system, one disturbance analysis could involve a set of 15,000 differential equations and 40,000 nonlinear algebraic

M ethOd O I Ogy equations for a simulation time duration of 10-20s; besides, the number of disturbances to be considered is also enormous, e.g., for the
14,000-bus system, the typical number of postulated disturbances is between 2000 and 3000.”
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BaCk round B Data-Driven Stability Assessment Strategy

WAMS Control
Off-line On-line Center

P ro b I e m Stability Information
Description

EIEIESE Real-time System

Measurements

— 1 PDC PDC

Historical archives

Methodol ogy Off-Line Simulation 1

| Phy8|cal Oerat|on

C[D

Classifier/Predictor A 4
put
ication

: Computation Data
Stability Assessment | I Application Architecture Collection
Results
Ca Se St u dy —»  Automatic Learning Data-Ana]ytiCS
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Backround B Key Research Problems: that have been solved by us

1. Generate a comprehensive stability database 2. Select/extract significant features

Problem 3. Evaluate the credibility of the model output 4. Improve & tradeoff the accuracy and speed

5. Extract interpretable knowledge for stability control 6. Update the model timely and effectively

Description

7. Mitigate abnormal measurements, such as missing data, communication delay

8. Adapt the trained model to unforeseen scenarios, e.g., unexpected fault, different topologies.

Methodology . . N .

| 1. Y Xu Z.Y. Dong, K. Meng, R. Zhang and K.P. Wong, “Real-time transient stability assessment model

¢ Vo oDy ngh-20d

Y. Xu, Z.Y. Dong, Z. Xu, K. Meng, and K.P. Wong, “An intelligent dynamic security assessment
framework for power systems with wind power,” IEEE Trans. Industrial Informatics, 2012.

|
|
|
|
4. R Zhang, Y. Xu*, Z.Y. Dong, and K.P. Wong, “Post-disturbance transient stability assessment of power
; systems by a self-adaptive intelligent system,” IET Gen. Trans. & Dist., 2015.
' 5. Y. Xu, R. Zhang, J. Zhao, et al, “Assessing short-term voltage stability of electric power systems by a
I . ! hierarchical intelligent system,” IEEE Trans. Neural Networks and Learning Systems, 2016.

COnC usion ! 6. Y.Zhang, Y. Xu*, Z.Y. Dong, et al, “Intelligent early-warning of power system dynamic insecurity risk
:
|
|
|
|
|
|
1

.°°

Case Study

towards optimal accuracy-efficiency trade-off,” IEEE Trans. Industrial Informatics, 2017.
7. Y. Zhang, Y. Xu*, and Z.Y. Dong. “Robust ensemble data-analytics for incomplete PMU measurement-
based power system stability assessment,” IEEE Trans. Power Systems., 2018.

8. Y. Zhang, Y. Xu*, Z.Y. Dong, et al, “A Hierarchical Self-Adaptive Data-Analytics Method for Power
System Short-term Voltage Stability Assessment,” IEEE Trans. Industrial Informatics, 2019. 7
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Backround B Key Research Problems: that have been solved by us

9. Y. Zhang, Y. Xu*, 2.Y. Dong, and P. Zhang, “Real-Time Assessment of Fault-
Induced Delayed Voltage Recovery: A Probabilistic Self-Adaptive Data-driven
Problem Method,” IEEE Trans. Smart Grid, 2019.

Description

Intelligent Systems for
Stability Assessment and
Control of Smart Power Grids

10. Y. Zhang, Y. Xu*, Z.Y. Dong, and R. Zhang, “A Missing-Data Tolerant Method
for Data-Driven Short-Term Voltage Stability Assessment of Power Systems,”
IEEE Trans. Smart Grid, 2019.

11. C. Ren and Y. Xu*, “A Fully Data-Driven Method based on Generative

Adversarial Networks for Power System Dynamic Security Assessment with

M ethOdOIOgy Missing Data,” IEEE Trans. PowerySystemi., 20109. ’

12. C. Ren and Y. Xu*, “Transfer Learning-based Power System Online Dynamic
Security Assessment: Using One Model to Assess Many Unlearned Faults,”
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System for Temporal-Adaptive Voltage Stability Ass

Systems,” IEEE Trans. Industrial Informatics, 2020.
14. C. Ren and Y. Xu*, “Incremental Broad Learning for Real-Time Updating of

Data-Driven Power System Dynamic Security Assessment Models,” IET Gen L
Case StUdy Trans. & Dist., 2020.

Zhao Yang Dong and Rui Zhang

15. C. Ren, Y. Xu*, and R. Zhang, “An Interpretable Deep Learning Method for
Power System Dynamic Security Assessment via Tree Regularization,” IEEE

COnCIUSion Trans. Power Syst., 2021. i
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R. Zhang, "Intelligent Systems
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Control of Smart Power Grids,”
CRC Press, 2020.
ISBN-13: 978-1138063488

16. C. Ren, Y. Xu*, B. Dai, and R. Zhang, “An Integrated Transfer Learning Method
for Power System Dynamic Security Assessment for Unlearned Faults with

— Missing Data,” IEEE Trans. Power Syst., 2021.
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Background B Problem Description: Adversarial Examples

All the existing works assume that the values of the

m feature inputs to the model are true. However, they WAMS
DESCI‘itiOh can be false due to many practical issues such as Center
cyber-attack in both physical and data-analytics
layers! e
Methodology .
Data-Analytics
Layer PMU |- PMU
Cdmplutati 3 1~
u C&mn ( N /:Ewu& G'® N ’ 3 4U malfunction
PDC failure

Communication Error
Noise Manipulation
False Data Injection

/ Physical Operation /
& Control Layer
Case Study

Mathematical description

Conclusion

min ||X“d” — x||
xadv

Adversarial example: a modified version of the
original sample that is intentionally perturbed
@ te NANYANG but retains very close to the original one. It aims

TECHNOLOGICAL
UNIVERSITY to generate a wrong output.
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B Problem Description: lllustration of Adversarial Examples

Problem ‘M‘ + S - *"

Desc rltlon ‘ "How are you?"  perturbation "Open the door"

Small perturbations of the input
cause the sound wave and the
image to be misclassified.

Figure from “G. Anderson, et al. Optimization and
Abstragtion: A Synergisti pr nalyzinig Neu
l I Net rkaumss. P€c ACM SIGPL aol 9)” O

For data-driven stability assessment,
a small perturbation to the feature
input value that can lead to a
different (wrong) stability
assessment result.

T T T T T T T T T
o 20 40 60 80 100 0 20 40 60 80 100

Unstable voltage trajectories The unstable case is
i i classified as stable,
% 5% NANYANG So, high accuracy is not equal to f which is wrong.

2 TECHNOLOGICAL high robustness under
UNIVERSITY adversarial examples !!! FWW‘”“““““'”"M““““ S 10

Adversarial Perturbations




Background B Adversarial Example Generation: Fast Calculation Method

Mathematical Model Fast Gradient Sign Method (FGSM)

Problem x4V = x + § - sign(VyL(f5 (%), 7))

min ||x*® — x|
p

! :

: :

! :

° ° i xadv A

Description g : -

: S t fe (X) = y : ------------------------------------------------------- 1

! L advY — .,/ ' : Multi-Step FGSM '

: fo(x2®) =y #y | P ;

| ] | gadv _ padv : - adv !
Methodolo T . XY = x3 + (8/1) - sign (VXL(fe(xi ),y)) ;
Adversarial example y and y' denote the corresponding output label of x and x%%, I","",_""__ _____ _ _______ ) _,"""""""""",_ ________
generation respectively; |-|l,, denotes the distance between x and X% and p sign(+) is the sign function; § specifies the boundary of perturbation;

meaVe magnitude o ath]pm[bjo by pc distancepL(-,-) r_‘iirﬁsents tﬁs{un%(-).

White-box scenario Black-box scenario
Complete knowledge of the original trained model (e.g., None or limited knowledge of the original trained
original training database, training algorithm, model structure, model is available to cyber attackers

parameter settings, etc.) is available to cyber attackers.

Case Study

Surrogate ML-
based Model f,

Black-Box Scenario

"""""""""""""""""" 1 White-Box Scenario

! |
L Ly 1
! Labeled I Unlabeled in T Close
° ! - Ve — £ (X 1y niabele Train dlose _ < ol | true
Conclusion | [ sample e I Train T ] sample g P = ol ) ¥
R >l - Complete_ | Original b ————- » ~
y Knowledge | viipased! 2202020202020 /) 0 TTTmmms -n S
" 5 N H
Adversarial Example Model f, Y Adversarial Example | >, K\ngg 1%
— — Generation Strate 4 Generation Strate o
%@ % NANYANG — T
TECHNOLOGICAL Y __ ’ 4
UNIVERSITY Adversarial ’// adV:f( adv \ g Close » yfalse Adversarial L _ ML-based p 2= f a0V ) (g Close N | false
Perturbatiafite Vi Perturbatiqg Model f, | | = 0%ed (€T 2| Y



SETQ GGl B Robustness Evaluation: Principle

The robustness can be evaluated by the average minimal adversarial perturbation for a successful
adversarial attack.

Problem |
DeSCI‘iption rréin HSX“p Adversarial perturbation for a nonlinear binary
, { fo(x) =y classifier
S.L
fo(x) # fo(x + &)

Methodology . - |
€xmin = argmin ||lex|l,represents the minimal adversarial

perturbation of the original sample under the classifier
fo (). For the L2-norm distance, Sx,min”z represents the

Robustness evaluation mini istancesfrom iginal sample X toithe |
indices classificati ﬁdar O

linear separating
hyperplane . 7,
| ]

approximate

Adversarial perturbation for a linear binary linear boundary
Case Study classifier e— e ae——
fo(X) =y
X
.\\\’ /0 () XO
C lusi § N
onciusion & S s/
% ’ A

fo(x) =y

approximate
linear boundary

& NANYANG

TECHNOLOGICAL linear separating
UNIVERSITY hyperplane .7~

separating hyperplane ./~ 12




Background B Robustness Evaluation: Proposed Indices

|
1> Adversarial Perturbations for Linear Binary
Classifiers

Problem

Description _fo®

X 2

Methodology

» Adversarial Perturbation for Nonlinear Binary
Classifiers

» Robustness index for instance (RI11) of
the classifier fp(-) for original sample x:

RUX) = [|&min]],

» Robustness index for classifier (RIC) of
the classifier fp(-)

||sxmm||

m?gséness evaluation u Y"a:ngn(Nl_[l I;;(x );l @‘pyng RICﬁOZA Xl

Case Study > The continuous procedure superposes the €} of each
iteration value as Eq. (13), to obtain the minimal

adversarial perturbation €, ,,;,, until the perturbed
Co n CI u SiO n instance (x+&, min) Makes the different target from the

original instance X, that is, f3(x) # f5(X + £ min)-

%t NANYANG

The empirical robustness indices (RIl and
RIC) can be utilized to measure the
robustness of instances and classifiers under
the adversarial attack.

The larger RIl and RIC values indicate
stronger abilities of instances and classifiers
against the adversarial perturbations.

TECHNOLOGICAL Rt e P L LT e L L LT L
% UNIVERSITY C. Ren, X. Du, Y. Xu*, Q. Song, Y. Liu and R. Tan, "Vulnerability Analysis, Robustness Verification and Mitigation Strategy of Machine

Learning-based Power Systems Stability Assessment Models under Adversarial Examples," IEEE Transactions on Smart Grid, 2021.



Background B Robustness Indices: Application

‘ Historical PMU Database \

Problem
Description

|

|

|

|

: Real-time PMU

: Measurements

] (Power Generation, Load
: Demand, Bus Voltage

| Magnitudes, etc)
|

|

|

|

|

|

|

|

:

|

il Feature Selection

Feature Input

» During the offline training stage, in
addition to the accuracy, the robustness
should also be evaluated to make sure
the model is both accurate and robust
for practical application.

YFIGhE20 0 s

|
|
|
|
I
I
|
|
|
|
|
Train  |e :
\ 4

I

|

|

|

|

|

|

|

|

I

|

|

|

&_/

Methodology

ML-based DSA Models Feature Selection

l

A 4

Feature Input

v

indices

lower robustness value, it should be
handled with extra care, e.g., using
traditional time-domain simulation
method instead.

\4

Trusted DSA Results

Case Study

A

Robustness evaluation | I
}
[}
}
[}
[}
[}
[}
[}
[}
[}
]
]
[}
[}
[}
: Preventive Control Actions
[}

Conclusion

Offline Training Stage Online Application Stage

& NANYANG
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J Mitigation Strategy against Adversarial Examples

Background

Adversarial training is to use a mixture of adversarial examples and original samples to train the
models, rather than using only the original samples.

Problem
Description

» Loss Function of Specific Single Adversarial Training under the White-Box Scenarios

Le(95(),y) = 1 = @) - Ly (f(x),) +a Ly (f (x+ Exmin(1+0)),¥)

Methodology

» Loss Function of Ensemble Adversarial Training under the Black-Box Scenarios

uSYarT (N Copyright 2024 ) )

Mitigation strategy _ _
a represents the ratio of the adversarial examples

White-Box Scenario Black-Box Scenario

Case Study

I —— N — 1 I Ib = Original | !
Labeled Unlabele Without | ML-based | Predict dose |
I : frue _ ¢ DR [ L - > =f,(x |
: Sample Xuhite J Train Y = To Xaite) Sample Xpiack | Knowledge ™| Model f, g : it :
L 1 T — |L _______ T T T |
Conclusion I \__Complete_ | Original R’ v i 2t TR ¥ == 2 . v
v Knowledge | ML-based o Empirical i | Surrogate Surrogate |!°
Empirical Model f, = Mitigation Strategy Robustness  («--4| ML-based |44 ML-based : Mitigation Strategy
Robustness : Specific Evaluation [ Model fy’ Model 5’ |; 4 Ensemble
T R Evaluation I Adversarial | A e et = | Adversarial
&8t < ¥égll_\|(ﬁgl EOGICAL i e TR = e
UNIVERSITY Adversarial Example | ' [ RobustML-based | ;| Adversarial Example | [ Adversarial Example |! __ ! [ Robust ML-based
Xwhite+€x min(1+0) Model g5 1L Xbplackt&xmif(1+o) Ksets | Xplackt&xmifi(d+0) | 1Model g7



Background B Universal Defense Strategy against Adversarial Examples

Randomized Smoothing aims to construct a new smoothed classifier \

P bl h(-) from any arbitrary base classifier f(-). The smoothed classifier h(-) fe) =C
rooiem . . ”

_ ) assigns the most likely class ¢ returned by the base classifier f(-) ’
DeSCI"Iptlon under the isotropic Gaussian noise perturbation of x to the point x. h f(x) =

h = = (a) base classifier
(x) = argmax . N(O 21)(1‘ (x+¢)=c)

MEthOdOIO The smoothed classifier h(-) returns the class ¢ with the largest

probability value in the decision region {f(X) = c|x € R™} under the
distribution ' (x, o21).

U-YarrNTl) ve@@gyﬁg ht 2

Mitigation strategy

|, < R, smoothed classifier = C4
where R = ||§]l; < 5 d~H(py) — P~ (p3)>
Case StUdy The smoothed classifier h(-) by randomized smoothing are certifiably

robust under the l,-norm ball with the effectiveness index R.

COnCIUSiOn » The value of the effectiveness index R is determined by three
factors: 1) noise level o; 2) the probability of the most likely class cy;
and 3) the probability of the other class. The ideal effectiveness index R
295> NANYANG is under the higher o, ¢, and the lower cg, but the higher o may slightly

TECHNOLOGICAL reduce the accuracy. =< ]
% UNIVERSITY C. Ren and Y. Xu*, “A Universal Defense Strategy for Data-Driven Power System Stability e T el et e

Assessment Models under Adversarial Examples,” IEEE Internet of Things Journal, 2022.




Backg round B Case Study: Short-Term Voltage Stability (STVS) Problem
The STVS problem is concerned on:
Problem

« Fault-induced delayed voltage recovery (FIDVR) — risk for wind turbine to ride through
Description

 Sustained low voltage without recovery — may lead to voltage collapse in the long-term
« Fast voltage collapse — usually associated with rotor-angle instability

U Yan E) Copyrlght UNSTABLE

Methodology

=
N

=

N

- ,' ~ 1B\
ca Se Stu d ——r /i 5 N ———
08 e /&l\ L08 | Teeeee—
06 &\ e bus 20 go6f
I ~bus 34 §
04 > > 04| bus 28 & 29
. =)
mop2t
0 3 ‘

Conclusion

Tin11é5(s) 2.5 3 0 0.5 1 Tirrlé?(s) 2 2.5 3
(b) (©)
243 NANYANG Fast Recovery FIDVR Sustained Low Voltage Fast Collapse

TECHNOLOGICAL satisfactor acceptable unacceptable unacceptable
UNIVERSITY ( y) ( P ) ( p ) ( p )
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Background

Problem
Description

Methodology

Case Study

Conclusion

&t NANYANG
-3 TECHNOLOGICAL
" ead UNIVERSITY

B Vulnerability Analysis

1.2 |

0.8

2
o

misclassify stable into unstable

misclassify stable into unstable
: : 0.3
0.4 0.5 0.6 0.7 0.8 0.9 1.0 0

(a) Whit-box Scenario

| | |
02 03 04 05 06 07 08 09 10
(b) Black-box Scenario

Voltage (p.u.)
o
o
o
w

. sclassifyginstable into stable

0O 01 02 03 04 05 06 07 08 09 10 O 01 02 03 04 05 06 07 08 09 10
(c) White-box Scenario (d) Black-box Scenario
Time (s)
Testing results with the adversarial examples
(a) misclassify stable into unstable under the white-box scenarios; (b) misclassify stable into unstable under the black-box scenarios;
(c) misclassify unstable into stable under the white-box scenarios; (d) misclassify unstable into stable under the black-box scenarios.

It can be seen that a very small perturbation to the voltage measurement value
can lead to a wrong stability assessment result. 18



SETL'GITII el B Vulnerability Analysis

» Testing System and Machine Learning (ML) Models

Problem « Testing system: IEEE New England 10-machine 39-bus system using the industry-standard composite
D . t. load model "CLOD"
eSC"P ion * ML-based STVS assessment models: Long short-term memory (LSTM), fully convolutional neural

network (FCNN), and back-propagation neural network (BPNN)
» Testing observation windows: 0.8s, 1.0s, 1.2s after the fault clearance

Methodology

TABLE 1
VULNERABILITY ANALYSIS FOR STVS ASSESSMENT ACCURACY OF ADVERS ARIAL EXAMPLES GENERATION STRATEGY

8

(0.8s, 1.0s, 1.25)] LSTM

Black-Box Scenarios
(using BPNN)

FCNN BPNN LSTM FCNN
(Surrogate)|(Surrogate) |(Surrogate)|(Surrogate) |(Surrogate) |(Surrogate)

/R
Average JO878% | 97.83% | 9722% ¥ 637% | 622% | 603% IS5 1902% | 17.03% P 1463% | 1662%  1353% | 1537%

Case Study I ¥ ¥ 1 1

> Results and Observations

COnCIUSIOn « For all ML models, the STVS accuracy drops sharply with the generated adversarial examples under
both white-box scenario (from 98% down to 6.03% to 6.37%) and black-box scenario (from 98% down
to 13.53% to 19.02%)).

5 et 5 ¥£ggﬁgfoelc Il - The accuracy of the original ML-based STVS models degrades much more significantly in the case of
UNIVERSITY the white-box scenarios than in the black-box scenarios.

FCNN | BPNN

19




Background

J] Mitigation Strategy against Adversarial Examples

TABLE I
RIC PERFORMANCE FOR ML-BASED STVS MODELS
P ro b I e m Original ML-based Models [ Specific Adversarial Training-based Mitigation | Ensemble Adversarial Training-based Mitigation
D ° t ® Observation | Without Adversarial Examples Strategy under White-Box Scenarios Strategy under the Black-Box Scenarios
e SC rl p I o n Windows . . \ ) Ensemble Ensemble Ensemble
(085,10, 129{ psrm | Fenn | Benn [SPecifie Lsm Specific ¥ ((:NN Specific BPNN | £ -NN&BPNN | LSTM&BPNN | LSTM&FCNN
(against LSTM)l(against FCNN)against BENN) o o 1.STM) | (against FONN) | (against BPNN)
IVI ethodology Average 0.020 0.017 0.016 0.046 0.043 0.041 0.039 0.036 0.035
TABLE 11

ACCURACY PERFORMANCE OF ADVERSARIAL TRAINING-BASED MITIGATION STRATEGY AGAINST ADVERSARIAL EXAMPLES

Testing
s es wi w
| I a bservatio -
indows pecific LSTM | § c e il L& BP] semble LSTM & FCNN
(0.8s,1.0s, 1.25 (against LSTM) (against BPNN) (against FCNN) (against BPNN)
Clean Samples 98.23% 97.07% 97.05% 96.75% 96.68% 96.22%
A;::;s;]‘::' 97.68% 96.07% 95.69% 95.37% 94.92% 94.70%

Case Study

Table Il lists the average RIC results of original ML-based STVS model, robust ML-based STVS models
after the specific and ensemble adversarial training-based mitigation strategy.

The RIC value validates the adversarial training-based mitigation strategy for the white-box scenarios is
more effective than the black-box scenarios. For RII, the larger the RIl value, the greater the adversarial
perturbation needed to successfully attack the original sample.

Table 1l shows the adversarial training-based mitigation strategy accuracy performances with the

original clean samples and adversarial examples for both the white-box and the black-box scenarios
20

Conclusion

& o NANYANG

TECHNOLOGICAL
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Background J] Mitigation Strategy against Adversarial Examples

1 1
1 ]
| |
I 2958 31 98.96% 203 2821 | 6.71% 633 2492 | 20.26% 2910 49 98.34% ,| 2849 127 | 95.73% |,
P ro b I e m 1 1 TP EP precision 1 TP EP precision 1 TP EP precision 1 TP EP precision TP FP precisionf,
. e E : E E E i
Desc rl tlon .‘;j‘ 1| %2 2969 | 98.78% | <= | 2797 179 6.74% e .| 2367 508 2067%| = | 90 2051 | e767%| = | 151 2873 | 95.35% !
p 12 FN TN Fl-score| & FN TN Fl-score| © FN TN Fl-score| & FN TN Fl-score| & FN TN Fl-score|,
(&] (&S] (&] (&S] (&)
& = 5 5 5 :
:5 98.60% | 98.97% | 98.78% | = | 6.77% | 597% | 637% | = | 21.10% | 16.93% | 19.02% | = | 97.00% | 98.37% | 97.68% | = | 94.97% | 95.77% | 95.37% :
h d I I recall [specificity] accuracy recall |specificity] accuracy recall |specificity] accuracy recall |specificity] accuracy recall |specificity| accuracy I
Met | i
e O o Ogy I 1 A 1 il 1 A 1 | 1 -1 1
1 ground truth label ground truth label ground truth label ground truth label ground truth label 1
1 (a) original LSTM (b) original LSTM under (c) original LSTM under (d) robust LSTM via mitigation (e) robust LSTM via mitigation |
1 white-box adversarial white-box adversarial strategy under white-box strategy under black-box !
: k scenarios attack scenari@s ad rialsattac ario adversarial attack scenarios :
| I _raw atr riginal afd rabust L‘TM @I‘p\yelﬂtg obs rva’Q @ 0 & different scenarios. I
= o - — % - - - _F_F _ = = - e iy S P o o o o o & |

|-{:Irlullnl Muodel withowt Adversoriol Examples [ White-Box Attack [0 Bleck-Box Atinck by Surrogate Model | [N Mack-Box Atiack by Surregate Model 2 [ Mitigntion Strategy Agninss White-Box Attack [ Mitigation Sirategy Against Black-Box Atinck |

Accuracy and RIC results for three different methods under the three different observation window (0.8s, 1.0s, 1.2s)
(a) STVS accuracy; (b) RIC.

2% % NANYANG
TECHNOLOGICAL ‘
% B L - - - - - - - - - - oo o oo o e

|
! I
|
| 100 T ] I I I I I T I - .05 - [ [ [ T [ [ [ [ [ g 1
— ™ I
I _
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Adversarial Perturbations
(b) post-fault SA via CNN (soft smoothing)

Adversarial Perturbations
(a) post-fault SA via LSTM (hard smoothing)

Methodology
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Testing results of certified SA accuracy under different adversarial perturbations for pre-fault and post-fault SA with
different data-driven SA models.

Case Study
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c I : > Above figures show Tradeoff between Robustness and Accuracy that the largest noise level o
onciusion . . . .
can only guarantee the largest effectiveness index R, but cannot always achieve the highest
5425 NANYANG certified SA accuracy under all the adversarial perturbations | | |
%21 TECHNOLOGICAL » Based on such results, we can select the more robust data-driven models, which are trained by
: ‘9 UNIVERSITY different ML algorithms or under the different degree of adversarial attacks.
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Background B Conclusions

We firstly reveal the threat of the adversarial examples to the ML-based model, then systematically
PI‘Oblem evaluate the robustness of the ML-based model under the adversarial examples, and finally develop

Description a mitigation strategy against the adversarial examples.

v' The threat of the adversarial examples for the ML-based model under both the white-box and the
black-box scenarios is illustrated using an adversarial example generation strategy. It reveals that
Methodology the adversarial example can obviously lead to ML accuracy degradation.

v' To accurately quantify the vulnerability of the ML-based models and instances, two robust indices
are proposed for the empirical robustness evaluation.

u/ Yﬁﬂn trrNy:i[dtﬂn d “la aﬁ' tﬂl toltte 62;\@“ gqﬁktjness evaluation,
h an maintain the acectracy and imprave the robysiness of t - d model against the
adversarial examples. A defense strategy is proposed to train a smoothed probabilistic classifer.

For more technical details of this work, please refer to our publications:

Case Study

1. C. Ren, X. Du, Y. Xu*, Q. Song, Y. Liu and R. Tan, "Vulnerability Analysis, Robustness Verification and Mitigation
Strategy of Machine Learning-based Power Systems Stability Assessment Models under Adversarial Examples,"
I[EEE Transactions on Smart Grid, 2021.

2. C. Ren and Y. Xu* "Robustness Verification for Machine Learning-based Power System Dynamic Security
Assessment,” IEEE Transactions on Control of Network Systems, 2022.

525 NANYANG 3. C. Ren and Y. Xu*, “A Universal Defense Strategy for Data-Driven Power System Stability Assessment Models
SOEEO) R . ” !
e P TECHNOLOGICAL [ under Adversarial Examples,” IEEE Internet of Things Journal, 2022.
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