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• What is done and not done? 

• What is the adversarial example? 



North America Blackout

2003

2006

2012

2016

West Europe Blackout

India Blackout

South Australia 

Blackout

Power System Stability

Definition

“Power system stability is the ability of an electric power system, for a given initial operating condition, to 
regain a state of operating equilibrium after being subjected to a physical disturbance, with most system 
variables bounded so that practically the entire system remains intact.”

Conventional power grid → “Smart Grid”

• Generation side: high-level intermittent renewable energy integration 

• Demand side: demand response, electric vehicle, distributed energy storage, etc. 

• Device-grid interface: power-electronics converters 

Recent major blackout events

Higher operating 

uncertainties

+

Complicated system 

dynamics 

… … … … ?

Very high wind power 

penetration level (48%)
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Classification for Stability Assessment and Control

time

Contingency

Steady State

(pre-fault)

Dynamic State

(post-fault)

On-line Stability 

Assessment

Preventive

Control

Real-time Stability 

Assessment

Emergency

Control

Classification for Power System Stability

• Rotor Angle Stability (large-disturbance and small-disturbance)

• Voltage Stability (short-term or long-term)

• Frequency Stability (short-term and long-term)

Accuracy, Speed, Knowledge Accuracy, Earliness, Reliability 

ሶ𝐱 = 𝐟 𝐱, 𝐲, 𝐩, 𝛌 0 = 𝐠 𝐱, 𝐲, 𝐩, 𝛌

the faster, the more faults can be assessed the earlier, the more time is left for control
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• Resonance stability (electrical and torsional)

• Converter-driven stability (fast and slow interaction) 



Conventional Methods (Model-based) 

• Time-domain Simulation: to solve a large-scale differential-algebraic equation (DAE) set 

• Data requirement: system model (static and dynamic), network topology, state-estimation, fault, etc. 

• Outputs: system’s time-varying trajectories  

• Event-based control: lookup decision table, contingency indexing   
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stability lost after 1.3s 

PSS/E simulation costs 2.2s CPU time

“for a 14,000-bus system, one disturbance analysis could involve a set of 15,000 differential equations and 40,000 nonlinear algebraic 

equations for a simulation time duration of 10-20s; besides, the number of disturbances to be considered is also enormous, e.g., for the 

14,000-bus system, the typical number of postulated disturbances is between 2000 and 3000.” 

fault occurs at 0.2s 
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Control 
Center

PDC PDC

Physical Operation 

& Control Layer

Application

Data 

Collection
Computation 

Architecture

WAMS

… …

…

Stability Information

Database

Off-Line Simulation

Historical archives

Input-Output 

Specification

Off-line

Real-time System 

Measurements 

Classifier/Predictor

Stability Assessment 

Results

On-line 

Decision Making

Automatic Learning

Other Relevant 

Knowledge

Updating

Data-Driven Stability Assessment Strategy 

PMU PMU PMU PMU

Data-Analytics 

Layer

Preventive/emergency 
controls

Load or 
generation 
shedding

System 
separation

Re-
dispatching 

Z.Y. Dong, Y. Xu, P. Zhang, and K.P. Wong “Using intelligent system to assess an

electric power system’s real-time stability,” IEEE Intelligent Systems Magazine, 2013.
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Key Research Problems: that have been solved by us

1. Generate a comprehensive stability database

3. Evaluate the credibility of the model output

5. Extract interpretable knowledge for stability control 

7. Mitigate abnormal measurements, such as missing data, communication delay

8. Adapt the trained model to unforeseen scenarios, e.g., unexpected fault, different topologies.

2. Select/extract significant features

4. Improve & tradeoff the accuracy and speed

6. Update the model timely and effectively  
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All the existing works assume that the values of the 
feature inputs to the model are true. However, they 
can be false due to many practical issues such as 
cyber-attack in both physical and data-analytics 
layers! 

Problem Description: Adversarial Examples

Control 
Center

PDC

PMU PMU

PDC

PMU PMU

WAMS

… …

…

PMU malfunction

Communication Error

Noise Manipulation

PDC failure

Potential 

Cyber-Attacks

False Data Injection

Physical Operation 

& Control Layer

Application
Data 

Collection

Computation 

Architecture

Data-Analytics 

Layer

Adversarial example: a modified version of the 
original sample that is intentionally perturbed 
but retains very close to the original one. It aims 
to generate a wrong output.

Mathematical description

min
𝐱𝑎𝑑𝑣

𝐱𝑎𝑑𝑣 − 𝐱
𝑝

s.t. ൝
𝑓𝜃 𝐱 = 𝑦

𝑓𝜃 𝐱𝑎𝑑𝑣 = 𝑦′ ≠ 𝑦
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Problem Description: Illustration of Adversarial Examples 

Figure from “G. Anderson, et al. Optimization and 
Abstraction: A Synergistic Approach for Analyzing Neural 
Network Robustness. Proc. 40th ACM SIGPLAN (PLDI ’19).” 

Small perturbations of the input 
cause the sound wave and the 
image to be misclassified. 

So, high accuracy is not equal to 

high robustness under 

adversarial examples !!! 

For data-driven stability assessment, 
a small perturbation to the feature 
input value that can lead to a 
different (wrong) stability 
assessment result. 

𝐱𝑎𝑑𝑣 = 𝐱 + 𝛆𝐱
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Unstable voltage trajectories The unstable case is 

classified as stable, 

which is wrong.

Adversarial Perturbations



Adversarial Example Generation: Fast Calculation Method 

Labeled 

Sample xwhite

Adversarial 

Perturbation

Original 

ML-based 

Model fθ
Adversarial Example 

Generation Strategy

ytrue = fθ (xwhite)

yadv= fθ(x
adv  ) yfalseClose

white
white

White-Box Scenario

Complete 

Knowledge

Train

Unlabeled 

Sample xblack

Adversarial 

Perturbation

Surrogate ML-

based Model fθ 

Adversarial Example 

Generation Strategy

yclose = fθ(x       )

yadv= fθ(x
adv  )

ytrue

yfalse

Close

Close

Original 

ML-based 

Model fθ

Train

^

black
black

Black-Box Scenario

Without 

Knowledge

black

White-box scenario 
Complete knowledge of the original trained model (e.g., 

original training database, training algorithm, model structure, 

parameter settings, etc.) is available to cyber attackers.

Black-box scenario
None or limited knowledge of the original trained 

model is available to cyber attackers

Mathematical Model

min
𝐱𝑎𝑑𝑣

𝐱𝑎𝑑𝑣 − 𝐱
𝑝

s.t. ൝
𝑓𝜃 𝐱 = 𝑦

𝑓𝜃 𝐱𝑎𝑑𝑣 = 𝑦′ ≠ 𝑦

𝑦 and 𝑦′ denote the corresponding output label of 𝐱 and 𝐱𝑎𝑑𝑣, 

respectively; · 𝑝 denotes the distance between x and 𝐱𝑎𝑑𝑣, and 𝑝

measures the magnitude of adversarial perturbation by 𝑝-norm distance.

Fast Gradient Sign Method (FGSM)

𝐱𝑎𝑑𝑣 = 𝐱 + 𝛿 ∙ 𝑠𝑖𝑔𝑛 ∇𝐱𝐿 𝑓𝜃 𝐱 , 𝑦

Multi-Step FGSM

𝐱𝑖+1
𝑎𝑑𝑣 = 𝐱𝑖

𝑎𝑑𝑣 + Τ𝛿 𝑖 ∙ 𝑠𝑖𝑔𝑛 ∇𝐱𝐿 𝑓𝜃 𝐱𝑖
𝑎𝑑𝑣 , 𝑦

sign(·) is the sign function; 𝛿 specifies the boundary of perturbation; 
L(·,·) represents the loss function of model 𝑓𝜃 · .

An approximate 

solution
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Robustness Evaluation: Principle

xfθ (x) = y

fθ (x) = y 

linear separating 

hyperplane F

x0

x1

linear separating 

hyperplane F

approximate 

linear boundary 

x
0fθ (x) = y

fθ (x)  = y 

x
1

separating hyperplane F

approximate 

linear boundary 

Adversarial perturbation for a linear binary 

classifier

Adversarial perturbation for a nonlinear binary 

classifier

The robustness can be evaluated by the average minimal adversarial perturbation for a successful 

adversarial attack.

min
𝛆𝐱

𝛆𝐱 𝑝

s.t. ቊ
𝑓𝜃 𝐱 = 𝑦

𝑓𝜃 𝐱 ≠ 𝑓𝜃 𝐱 + 𝛆𝐱

𝛆𝐱,𝐦𝐢𝐧 = arg min
𝛆𝐱

𝛆𝐱 2represents the minimal adversarial 

perturbation of the original sample under the classifier 

𝑓𝜃 · . For the L2-norm distance,  𝛆𝐱,𝐦𝐢𝐧 2
represents the 

minimal distance from the original sample x to the 

classification boundary.
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Robustness Evaluation: Proposed Indices 

➢ Adversarial Perturbations for Linear Binary 

Classifiers

𝛆𝐱,𝐦𝐢𝐧 = arg min
𝛆𝐱

𝛆𝐱 2 = −
𝑓𝜃 𝐱

𝜃 2
2 𝜃

➢ Adversarial Perturbation for Nonlinear Binary 

Classifiers

𝛆𝐱,𝐦𝐢𝐧
𝑖 = arg min

𝛆𝐱
𝑖

𝛆𝐱
𝑖

2
= −

𝑓𝜃 𝐱𝑖

∇𝑓𝜃 𝐱𝑖
2
2 ∇𝑓𝜃 𝐱𝑖

➢ The continuous procedure superposes the 𝛆𝐱
𝑖 of each 

iteration value as Eq. (13), to obtain the minimal 

adversarial perturbation ො𝛆𝐱,𝐦𝐢𝐧 until the perturbed 

instance (𝐱+ො𝛆𝐱,𝐦𝐢𝐧) makes the different target from the 

original instance x, that is, 𝑓𝜃 𝐱 ≠ 𝑓𝜃 𝐱 + ො𝛆𝐱,𝐦𝐢𝐧 .

ො𝛆𝐱,𝐦𝐢𝐧 = ෍
𝑖

𝛆𝐱,𝐦𝐢𝐧
𝑖

➢ Robustness index for instance (RII) of 

the classifier 𝑓𝜃 · for original sample x:

RII 𝐱 = ො𝛆𝐱,𝐦𝐢𝐧 2

➢ Robustness index for classifier (RIC) of 

the classifier 𝑓𝜃 ·

RIC 𝑓𝜃(·) =
1

𝑁
෍

𝐱𝑛ϵ 𝒟

ො𝛆𝐱,𝐦𝐢𝐧 2

𝐱𝑛 2

The empirical robustness indices (RII and

RIC) can be utilized to measure the

robustness of instances and classifiers under

the adversarial attack.

The larger RII and RIC values indicate

stronger abilities of instances and classifiers

against the adversarial perturbations.
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Historical PMU Database
Real-time PMU

 Measurements
(Power Generation, Load 

Demand, Bus Voltage 

Magnitudes, etc)

Robust DSA Model

Trusted DSA Results

Offline Training Stage Online Application Stage

Accuracy Index

Feature Selection

Select

Feature Input

Feature Input

ML-based DSA Models

Adversarial Robustness 

Verification

Robust Index

Robust DSA Model

Feature Selection

Preventive Control Actions

Satisfactory?
Update

Train

Yes

No

Robustness Indices: Application 

• During the offline training stage, in 

addition to the accuracy, the robustness 

should also be evaluated to make sure 

the model is both accurate and robust 

for practical application. 

• Besides, if an online instance has a 

lower robustness value, it should be 

handled with extra care, e.g., using 

traditional time-domain simulation 

method instead. 
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Mitigation Strategy against Adversarial Examples

Adversarial training is to use a mixture of adversarial examples and original samples to train the

models, rather than using only the original samples.

➢ Loss Function of Specific Single Adversarial Training under the White-Box Scenarios

𝐿𝑔 𝑔෩𝜃 𝐱 , 𝑦 = 1 − 𝛼 · 𝐿𝑓 𝑓 𝐱 , 𝑦  + 𝛼 · 𝐿𝑓 𝑓 𝐱 + ො𝛆𝐱,𝐦𝐢𝐧 1 + σ , 𝑦

➢ Loss Function of Ensemble Adversarial Training under the Black-Box Scenarios

𝐿𝑔 𝑔෩𝜃 𝐱 , 𝑦𝑐𝑙𝑜𝑠𝑒 = ෍

𝑘=1

𝐾

ቄ 1 − 𝛼 · 𝐿 መ𝑓 𝑘 መ𝑓 𝑘 𝐱 , 𝑦𝑐𝑙𝑜𝑠𝑒 ൠ+𝛼 · 𝐿 መ𝑓 𝑘 መ𝑓 𝑘 𝐱 + ො𝛆𝐱,𝐦𝐢𝐧
𝑘 1 + σ , 𝑦𝑐𝑙𝑜𝑠𝑒

Labeled 

Sample xwhite

Adversarial Example 

xwhite+εx,min(1+σ)

Original 

ML-based 

Model fθ
Empirical 

Robustness 

Evaluation

ytrue = fθ (xwhite)

Specific  

Adversarial 

Training   

White-Box Scenario

Complete 

Knowledge

Train

Mitigation Strategy

Robust ML-based 

Model gθ
~

Unlabeled 

Sample xblack

Adversarial Example 

xblack+εx,min(1+σ)

Original 

ML-based 

Model fθ

Empirical 

Robustness 

Evaluation

yclose = fθ (xblack)

Ensemble 

Adversarial 

Training 

Black-Box Scenario

Without 

Knowledge

Mitigation Strategy

Robust ML-based 

Model gθ
~

Surrogate 

ML-based 

Model fθ 
^

Surrogate 

ML-based 

Model fθ 

...

Adversarial Example 

xblack+εx,min(1+σ)

Train

Predict

^ (k)

(1)

K models

K sets

...
(k)

(1)

α represents the ratio of the adversarial examples
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Universal Defense Strategy against Adversarial Examples

Randomized Smoothing aims to construct a new smoothed classifier

ℎ · from any arbitrary base classifier 𝑓 · . The smoothed classifier ℎ ·
assigns the most likely class 𝑐 returned by the base classifier 𝑓 ·
under the isotropic Gaussian noise perturbation of x to the point x.

ℎ x = arg max
𝑐∈Y

Pr
𝜀~𝒩 0,𝜎2𝐼

𝑓 x + ε = 𝑐

The smoothed classifier ℎ · returns the class 𝑐 with the largest

probability value in the decision region {𝑓 ොx = 𝑐|ොx ∈ ℝ𝑚} under the

distribution 𝒩 𝑥, 𝜎2𝐼 .

➢ Effectiveness Index R for Universal Defense Strategy

∀ 𝛿 2 ≤ 𝑅, smoothed classifier ℎ x + 𝛿 = 𝑐𝐴

𝑤ℎ𝑒𝑟𝑒 𝑅 = 𝛿 2 ≤
𝜎

2
· Φ−1(𝑝𝐴) − Φ−1 𝑝𝐵

The smoothed classifier ℎ · by randomized smoothing are certifiably

robust under the l2-norm ball with the effectiveness index R.

➢ The value of the effectiveness index R is determined by three

factors: 1) noise level 𝜎; 2) the probability of the most likely class 𝑐𝐴;

and 3) the probability of the other class. The ideal effectiveness index R

is under the higher 𝜎, 𝑐𝐴 and the lower 𝑐𝐵, but the higher 𝜎 may slightly

reduce the accuracy.
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f (x) = 

pA

X 

x

X 

x

X 

x

X 

x

f (X ) = 

h (x) = 

pB

__
__

h (X ) = 

h (X ) = 

(a) base classifier

(b) smoothed classifier

 (c) smoothed classifier (correct condition) 

 (d) smoothed classifier (wrong condition)  C. Ren and Y. Xu*, “A Universal Defense Strategy for Data-Driven Power System Stability

Assessment Models under Adversarial Examples,” IEEE Internet of Things Journal, 2022.
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Case Study

Summary

Case Study: Short-Term Voltage Stability (STVS) Problem 

The STVS problem is concerned on:

• Fault-induced delayed voltage recovery (FIDVR) – risk for wind turbine to ride through 

• Sustained low voltage without recovery – may lead to voltage collapse in the long-term

• Fast voltage collapse – usually associated with rotor-angle instability

POST-FAULT VOLTAGE

STABLE UNSTABLE

Fast Recovery

(satisfactory)

FIDVR

(acceptable)

Sustained Low Voltage

(unacceptable)

Fast Collapse

(unacceptable)
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Vulnerability Analysis

Testing results with the adversarial examples
(a) misclassify stable into unstable under the white-box scenarios; (b) misclassify stable into unstable under the black-box scenarios; 
(c) misclassify unstable into stable under the white-box scenarios; (d) misclassify unstable into stable under the black-box scenarios.
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It can be seen that a very small perturbation to the voltage measurement value 
can lead to a wrong stability assessment result. 



Vulnerability Analysis

➢ Testing System and Machine Learning (ML) Models

• Testing system: IEEE New England 10-machine 39-bus system using the industry-standard composite
load model "CLOD"

• ML-based STVS assessment models: Long short-term memory (LSTM), fully convolutional neural
network (FCNN), and back-propagation neural network (BPNN)

• Testing observation windows: 0.8s, 1.0s, 1.2s after the fault clearance

➢ Results and Observations

• For all ML models, the STVS accuracy drops sharply with the generated adversarial examples under
both white-box scenario (from 98% down to 6.03% to 6.37%) and black-box scenario (from 98% down
to 13.53% to 19.02%).

• The accuracy of the original ML-based STVS models degrades much more significantly in the case of
the white-box scenarios than in the black-box scenarios.
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Mitigation Strategy against Adversarial Examples

➢ Table II lists the average RIC results of original ML-based STVS model, robust ML-based STVS models 

after the specific and ensemble adversarial training-based mitigation strategy.

➢ The RIC value validates the adversarial training-based mitigation strategy for the white-box scenarios is

more effective than the black-box scenarios. For RII, the larger the RII value, the greater the adversarial

perturbation needed to successfully attack the original sample.

➢ Table III shows the adversarial training-based mitigation strategy accuracy performances with the

original clean samples and adversarial examples for both the white-box and the black-box scenarios
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Mitigation Strategy against Adversarial Examples

Confusion matrix of original and robust LSTM model with three different observation window under different scenarios. 
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(b) original LSTM under 

white-box adversarial 

attack scenarios
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(c) original LSTM under 
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(e) robust LSTM via mitigation 

strategy under black-box 

adversarial attack scenarios  
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Accuracy and RIC results for three different methods under the three different observation window (0.8s, 1.0s, 1.2s)

(a) STVS accuracy; (b) RIC.
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Universal Defense Strategy against Adversarial Examples

Testing results of certified SA accuracy under different adversarial perturbations for pre-fault and post-fault SA with 

different data-driven SA models. 
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➢ Above figures show Tradeoff between Robustness and Accuracy that the largest noise level σ

can only guarantee the largest effectiveness index R, but cannot always achieve the highest

certified SA accuracy under all the adversarial perturbations

➢ Based on such results, we can select the more robust data-driven models, which are trained by

different ML algorithms or under the different degree of adversarial attacks.



Conclusions

For more technical details of this work, please refer to our publications:

1. C. Ren, X. Du, Y. Xu*, Q. Song, Y. Liu and R. Tan, "Vulnerability Analysis, Robustness Verification and Mitigation

Strategy of Machine Learning-based Power Systems Stability Assessment Models under Adversarial Examples,"

IEEE Transactions on Smart Grid, 2021.

2. C. Ren and Y. Xu*, "Robustness Verification for Machine Learning-based Power System Dynamic Security

Assessment,” IEEE Transactions on Control of Network Systems, 2022.

3. C. Ren and Y. Xu*, “A Universal Defense Strategy for Data-Driven Power System Stability Assessment Models

under Adversarial Examples,” IEEE Internet of Things Journal, 2022.

We firstly reveal the threat of the adversarial examples to the ML-based model, then systematically

evaluate the robustness of the ML-based model under the adversarial examples, and finally develop

a mitigation strategy against the adversarial examples.

✓ The threat of the adversarial examples for the ML-based model under both the white-box and the

black-box scenarios is illustrated using an adversarial example generation strategy. It reveals that

the adversarial example can obviously lead to ML accuracy degradation.

✓ To accurately quantify the vulnerability of the ML-based models and instances, two robust indices

are proposed for the empirical robustness evaluation.

✓ A mitigation strategy is designed via adversarial training and the empirical robustness evaluation,

which can maintain the accuracy and improve the robustness of the ML-based model against the

adversarial examples. A defense strategy is proposed to train a smoothed probabilistic classifer.
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